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Instrumental neutron activation analysis (INAA) has been applied to virtually every
type of evidentiary material for forensic purposes, including glass, rubber, narcotics,
soil, and paper [1-5]. Literature to date on sample identification of fme paper (book or
bond-type writing papers) by INAA has not emphasized the value of trace element con-
centration profiles or elemental ratios. It is to this area of sample identification that this
investigation was directed. Some assets of INAA that make it suitable for forensic analysis
are (1) the often nondestructive nature of the technique, which is valuable in many legal
situations; (2) extremely high sensitivity, allowing small samples of evidentiary material
to be used when mutilation is permitted; and (3) the ability to analyze for many elements
in a single sample.

The forensic significance of determining if separate pieces of fme papers have the same
elemental profiles is often of interest in judicial proceedings as supportive evidence. For
example, if all the sheets of paper, except one, that compose a will or contract have the
same trace element profiles, such data may be important supportive evidence. Because
trace element data obtained by INAA would be useful in such areas of supportive evi-
dence, a two-part study was undertaken.

The first part was directed toward determining if clays, internationally used as the
primary pigment filler in paper,, varied substantially in their trace element profiles. Such
an elemental profile data base must be provided from the filler within the paper since
unfilled paper provides a very weak data base because of the low level and small number
of trace elements present. For this study twelve different clays used in the paper industry
were analyzed for their trace element content.

The main objective of the second part of this study was to ascertain if the resultant
trace element profiles and respective elemental ratios of clay-filled papers could serve
as a "fingerprint" of that specific piece of paper. If such a fmgerprint exists, it could be
determined by INAA profiles that one sheet of paper was different from another sheet
or from a group of similar sheets. The study involved preparing pieces of paper, each of
which was filled with one of the clays analyzed in the first part of the study. These papers
were then subjected to INAA to obtain trace element profiles, ratios, and relative dis-
tinctiveness of the data.
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Analytical Procedure

Two types of samples had to be prepared for analysis: clay and paper. Because the
experimental purpose was forensic, it was important that a small sample size be used
so as not to sacrifice a significant portion of a limited amount of evidence. In a piece of
filled paper, most of the trace elements are due to the small amount of clay filler rather
than the bulk, which is fiber. Therefore, a preliminary experiment was undertaken to
determine the smallest sample of clay that could be reliably analyzed for its trace element
profile.

Five samples of a blended kaolin clay were prepared for analysis, the weights being
approximately 10, 25, 50, 100, and 200 mg each. The samples were sealed in precleaned
polyethylene bags and encapsulated in polyethylene pneumatic transfer containers
("rabbits") for irradiation. Two irradiations of each sample were made: first, a short
one for 10 mm in a thermal neutron flux of 1.6 X 1011 n/cm2 s, and then a long one of
1 h in a neutron flux of 5 X lO' n/cm2• s. The samples were counted a single time for
15 mm following the short irradiation. The samples were allowed to decay radioactively
for at least a week before being repackaged for the long irradiation. Three gamma-ray
spectra were taken after the long irradiation at decay times of 24 h, 5 days, and 3 weeks.

From the results of this preliminary experiment, it was decided that 25 mg would be
a suitable sample size of clay. Twelve different clays (eight kaolin types and four nonkaolin
types) were packaged for irradiation as described above. In addition to the clays, unfilled
paper samples had to be analyzed to determine background contributions for subsequent
filled paper analyses. The unfilled paper samples analyzed were (1) pulp, (2) pulp plus
alum, and (3) pulp plus alum plus rosin size. (Alum and rosin size are typical components
of fine paper.) A 25- to 35-mm square sample (—150 mg) of each unfilled paper was cut
from handsheets 89 by 178 mm with clean stainless steel scalpel blades. These square
pieces of paper were folded into quarters, then sealed in polyethylene bags and encapsu-
lated in "rabbits."

For cataloging the trace element profiles of clay and for analyzing unfilled papers,
the two irradiations used were 1 mm at a flux of 1 X 1013 n/cm2 s, to determine elements
producing short-lived isotopes, and 2 h at a flux of 5 X 1013 n/cm2 s, to determine ele-
ments producing medium- to long-lived isotopes. The same counting scheme as described
above was used.

For the final part of the study, analysis of unknown clay-filled papers, the same pack-
aging and analysis procedure was used as for the unfilled papers. In both cases, the paper
samples were handsheets prepared basically by Technical Association of the Pulp and
Paper Industry (TAPPI) Standard T218 OS-75. Pulp composition was 70% softwood
bleached sulfite/30% hardwood bleached sulfite. All the clay-filled sheets included
(on bone-dry fiber) 3.0% iron-free alum, 2.5% rosin size, and 15% pigment filler added.
Therefore, a 150-mg sample of a filled paper theoretically would contain about 23 mg of
pigment. This weight is approximately equal to the 25-mg clay sample size determined
to be suitable for analysis in the first experiment. Therefore, with the same irradiation
and counting procedure, the pigment analysis and the unknown filled paper analysis
should produce statistically comparable results, as they are both based on approximately
25 mg of clay.

For the quantification of trace element concentrations, primary standards made from
solutions of reagent-grade chemicals and a National Bureau of Standards (NBS) Standard
Reference Material, 1633—Coal Fly Ash, were prepared and irradiated under the same
conditions as the samples.

The counting equipment and data reduction procedures used were the same for all
sample sets. Two Ge(Li) semiconductor detectors, with 2.1-keV peak resolution for the
Co 1332-keV gamma-ray peak, each coupled with a 2048-channel analyzer, were used
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to acquire the gamma spectra. All data were stored on magnetic tape. Peak integration
was completed by using the ALSPIC program with the assistance of the NBS Univac 1108

computer [6].

Results and Discussions

Thermal neutron irradiation of a sample causes nuclear reactions, primarily of the (n,y)
type, on stable isotopes. The radioactive species produced by neutron irradiation observed
in this study after the short and long irradiations are listed in Tables 1 and 2. Not all
listed radioactive products were observed in all samples.

After it was determined that 25 mg would be a suitable sample size for clay analysis,
the twelve clays were analyzed for all trace elements that could be determined instru-
mentally with the irradiation and counting conditions outlined above. The results of this
part of the study amounted to a cataloging of the trace element profiles of the clays for
later unknown filled paper analyses.

The following elements were quantitatively determined in some or all of the samples:
aluminum, vanadium, manganese, sodium, chlorine, titanium, calcium, magnesium,
arsenic, samarium, gallium, lanthanum, tungsten, antimony, ytterbium, lutetium,
scandium, thorium, cobalt, chromium, cerium, tantalum, europium, cesium, barium, and
iron. Quantification was carried out by using the sample/standard comparator technique.
It was felt that presentation of all of the data accumulated would be cumbersome; there-
fore, in Table 3, data are given for only those elements later found to be useful in the
identification of unknowns. Results for elements listed above but not in Table 3 are
available.

The maximum expected analytical error per determination was 20%. Some of the
lowest concentrations determined for a given element have errors greater than this, but
these values were not used in the sample identification process. Occasionally, electronics
difficulties caused degradation of the counting system resolution, resulting in an overlap
of peaks and possible suspect values. A good example of this is thorium and chromium
determinations in the duplicate analyses of Clay 4.

In addition to clays, samples of unfilled papers were analyzed to determine their con-
tributions to background. All the filled papers contained both alum and rosin size.
Therefore, in Table 3 duplicate Samples 1 to 3B are the background controls for the
unknown filled clay sheets.

It can be seen from the data in Table 3 that there is considerable sample-to-sample

TABLE 1—Nuclear data for isotopes observed after short irradiation L7].

Gamma-Ray

Target
Nuclide

Natural
Abundance,

%

Thermal Neutron
Cross Section,

barns
Product
Nuclide Half-Life

Energy Used for
Analysis in This

Work, keY

27M 100 0.235 28A1 2.3 mm 1779V 99.25 4.9 52V 3.8 mm 1434
lTi 5.25 0.14 51Ti 5.8 mm 320
Ca 0.18 1.1 49Ca 8.8 mm 3084
26Mg 11,3 0.027 27Mg 9.5 mm 1014
Cl 24.47 0.43 38Cl 37 mm 2168
55Mn 100 13.3 56Mn 155 mm 1811
23Na 100 0.53 24Na 15 h 1368/2754

a! barn = 1.00 X 1028m2.
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TABLE2—Nuclear data for isotopes observed after long irradiation [7].

Target
Natural

Abundance,
Thermal Neutron

Cross Section, Product

Gamma-Ray
Energy Used for
Analysis in This

Nuclide % barnsa Nuclide Half-Life Work, keY

47.8 2 800 lS2mEu 9.3 h 963/344
6.8 1.20 42K 12.4 h 1525

71Ga 39.8 5.0 72Ga 14.1 h 834
68Zn 18.6 0.10 69Zn 14.1 h 439
Na 100 0.53 24Na 15.0 h 1368/2754

186W 28.4 40 '87W 23.9 h 686
'5As 100 4.5 7tAs 26.4 h 559
81Br 49.5 0.20 82Br 35h 776

139La 99.9 8.9 140La 40.2 h 1596
152Sm 26.6 210 153Sm 47 h 103

57.3 6.0 'Sb 64 h 564
174Th 31.8 55.0 175Th 4.2 days 396
'7tLu 2.6 2 000 177Lu 6.7 days 208
130Ba 0.10 8.8 131Ba 12 days 216
232Th 100 7.4 233Th —. 233Pa 27 days (233Pa) 312
50Cr 4.3 17 5tCr 28 days 320

168yb 0.14 11 000 '69Yb 32 days 198
'40Ce 88.5 0.60 '41Ce 32.5 days 146
58Fe 0.31 1.1 59Fe 46 days 1292

42.7 3.3 '2Sb 60 days 1691
84Sr 0.56 0.80 85Sr 64 days 514

100 46.0 ItOh, 72 days qualitative only
45Sc 100 13.0 4tSc 84 days 889
'81Ta 100 21.0 182Ta 115 days 1221
74Se 0.87 30.0 75Se 120 days 265

48.9 0.46 t5Zn 243 days 1115
"Cs 100 28.0 "4Cs 2.05 years 797
59Co 100 19.0 t0Co 5.26 years 1332

'51Eu 47.8 5 900 '52Eu 12.7 years 1408

al barn = 1.00 X 10—28 m2.

TABLE 3—Trace element concentrations,

Sample

Pulp Pulp +

Element
Pulp

1

+
Alum

2

Alum + Rosin Clays

3A 3B 4A 4B 5 6

Al 21 2600 3400 ND 2.2X105 1.6X105 1.6X105 1.6x105
Sc ND 0.0096 0.0087 0.011 18 17 3,8 5.0
Th ND ND ND 0.0085 35 15 15 10
Co ND 0.037 0.052 0.038 5.3 5.1 1.2 0.48
Cr ND ND ND 0.25 10 109 9.2 32
Ce 0.47 0.52 0.17 0.052 108 116 52 52
Sm 0.0064 0.014 0.011 ND 13 12 8.7 4.5
Eu ND ND 0.0026 0.0071 1.9 1.9 1.1 1.3
La 0.15 0.19 0.096 0.076 66 59 20 28

a ND not determined.
b Italicized values are greater than the minimum concentration in clay which is detectable in filled papers.
"Cz, mm = the minimum concentration in clay which would be detectable in a filled paper.
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variation in the concentrations of most trace elements. To determine which of these
concentration values are sufficiently above the background from the unfilled paper,
calculations were carried out.

The following assumptions were made to answer the question, "What is the minimum
concentration of an element in a clay (C mis) which would be detectable in a filled paper
as a substantial increase over the background concentration of that element, in other
words, the concentration in the unfilled paper?"

1. Assume an 8% loading of clay on a filled paper. (Although 15% by weight is
added, substantially less than this adheres.)

2. Assume 2.5 is a minimum factor detectable as an increase above background (unfilled
paper). (This factor is high to account for large concentration variations observed in the
unfilled paper.)

3. Assume the highest elemental concentration detected in any of the unfilled papers
(Samples 1 through 3B, Table 3) is the background value and is given as C6

By using these assumptions, a relationship for computing C ,, where z is the element
of interest, was derived. If an 8% clay loading is assumed, then 92% of the total filled
paper is background, as defined.

O.92Cb.z.max + 0.O8Cz,min = 2.SCb,z,max

Cz.min = —
O.92C1z,max)/0.O8

2OCb,z,max

Example: The highest concentration for scandium detected in the unfilled papers is
0.011 sg/g. Therefore, the minimum concentration of scandium in clay that would be
detectable above background in the filled papers is 20 X 0.011 sg/g, or 0.22 sg/g.

The last column in Table 3 lists this "minimum detectable limit" for all elements. All
concentrations for an element which exceed the minimum are indicated by italics.

The final portion of the study was the analysis of unknown clay-filled papers. Five
sheets were prepared by using one of the previously analyzed clays as a filler in each.
They were submitted as unknowns for INAA and the results appear in Table 4. As in
Table 3, only a partial listing of the elements determined appears.

in pg/g, ofunfilled papers and clays.a.b

Numbers

7 8 9 10 11 12 13 14 15

1.6X105 1.5Xl05 1.9X105 1.7X105 1.6X105 1.3X105 0.90X105 1.3X105 0.10X105 0.07X105
11 5.3 7.8 2.8 2.1 6.5 8.9 5.8 0.049 0.2
15 1.4 1.9 3.4 17 14 17 10 4.4 0.2

<0.16 4.4 12 4.1 1.3 <0.3 <0.08 <0.3 0.086 1.0

5.3 4.7 8.1 4.6 4.0 6.5 6.3 16 7.6 5
27 71 75 130 60 36 94 72 30 10

2.2 7.6 7.2 14 4.1 21 4.0 12 4.6 0.28

0.37 1.7 1.7 3.2 0.73 0.25 0.67 0.39 0.089 0.14

20 24 25 152 47 26 55 37 17 3.8
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in pg/g, o f  unfilled papers and clays, a,b 

Numbers 

7 8 9 10 11 12 13 14 15 Cz. rranc 

1.6x105 1.5x105 1.9x105 1.7XlO 5 1.6• 1.3• 0.90• 1.3)<105 0.10x105 0.07X105 
11 5.3 7.8 2.8 2.1 6.5 8.9 5.8 0.049 0.2 
15 1.4 1.9 3.4 17 14 17 10 4.4 0.2 

<0.16 4.4 12 4.1 1.3 <0.3 <0.08 <0.3 0.086 1.0 
5.3 4.7 8.1 4.6 4.0 6.5 6.3 16 Z6 5 

27 71 75 130 60 36 94 72 30 10 
2.2 Z6 Z2 14 4.1 2.1 4.0 12 4.6 0.28 
0.37 1.7 1.7 3.2 0.73 0.25 0.67 0.39 0.089 0.14 

20 24 25 152 47 26 55 37 17 3.8 
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TABLE 4—Trace element profiles of unknown filled papers (concentration in jg/g).

Sample A B C D E

Identification by analysis1 6 4 10 7 ND"
Known identification" 6 4 10 7 unfilled paper
Element

Al 1.2X104 1.2X10 1.2X10 0.71X10 0.33X10
Sc 0.382 1.30 0.180 0.660 0.0069
Th 0.64 2.2 0.16 0.85 0.01
Co 0.075 0.39 0.17 0.044 0.027
Cr 2.6 0.74 0.61 0.92 0.18
Ce 3.6 8.9 6.4 1.9 <0.07
Sm 0.24 0.64 0.85 0.10 0.0076
Eu 0.062 0.14 0.21 0.018 <0.002
La 1.6 2.5 9.2 0.10 0.083
Qualitative ... . .. Tb . .. ...

a Identification refers to sample numbers in Table 3.
bND = not determinable because the percentage of clay in paper is too low.

Since it could not be assumed in a real situation that the amounts of pigment retained
in various sheets were the same, the identification of unknown papers (Table 4) filled
with clays (Table 3) were evaluated by three criteria independent of load level. First,
those trace elements with relatively high concentrations in a given unknown were marked
as key identifying elements for that unknown. Second, the ratios of the concentrations
of these key elements and other well-determined elements were computed for the unknowns
and possible clay knowns. Third, any qualitative data such as unique elements were
noted. The following discussion will show how these three factors were used in concluding
unknown identification.

Unknown Sample C was the easiest to identify because of the qualitative information
that terbium was observed in the sample. Terbium had been observed in only one clay
sample (Sample 10). Since supporting data were available, they were used to confirm the
identification. Unknown C has the highest concentrations of samarium and europium of
any of the unknown papers. One would expect that the clay used as a filler in Unknown C
would also have relatively high samarium and europium concentrations. Clays 10 and 4
are the two samples from Table 3 that best fit this criterion. By using the technique of
elemental ratios, Unknown C is compared to Clays 10 and 4 in Table 5. The elemental
ratios for Unknown C compare better with those for Clay 10 than those for Clay 4. The
correct identification of Unknown C having Clay 10 as a filler was made.

Unknown Sample B contained many elements with high concentrations relative to the
other unknown filled papers. Scandium, thorium, cobalt, and cerium all appeared in
higher concentrations in Unknown B than any other unknown. Clay 4 is the only clay with
high values for all four elements. Other clays with high values for three of the four ele-
ments would be Clays 9 and 13. Some elemental ratios are compared for the four samples
in Table 6. Of the three clays, Samples 4, 9, and 13, the elemental ratios for Clay 4

TABLE 5—Comparison of Unknown C with Clays 10 and 4.

Ratio Paper Unknown C Clay 10 Clay 4

Ce/Sm 7.5 9.3 9.0
Eu/Sm 0.25 0.23 0.15
La/Sm 11 11 5.0
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TABLE 6—Comparison of elemental ratios for four samples.

Ratio Paper Unknown B Clay 4 Clay 9 Clay 13

Th/Sc 1.7 (0.9-1.9)' 0.24 1.9
Co/Sc 0.30 0.30 1.5 <0.009
Ce/Sc 6.8 6.4 9.6 11
Sm/Sc 0.49 0.71 0.92 0.45
Eu/Sc 0.11 0.11 0.22 0.075
La/Sc 1.9 3.6 3.2 6.2

a The duplicate analyses of clay (4A-4B) show very different values for thorium and chromium
because of the poor resolution of the adjacent peaks, 312-keY 3Pa (used to determine 233Th) and
320-keV 51Cr. In one series of counts, the detector-analyzer system was not operating at optimum
resolution, degraded to greater than 3 keY, resulting in overlapping of the 312-keV and 320-keV
peaks. The program used was unable to resolve overlapping peaks properly. The true values for
thorium and chromium probably lie somewhere between the two values given for each in Table 3.
This problem would not arise when equipment operating at optimum resolution is used.

compare best with Unknown B. None of the three clays compared well with the unknown
for the lanthanum/scandium ratio. Clay 13 has a closer samarium/scandium ratio to
Unknown B than Clay 4. However, the analytical error for each value is about 20%,
making the error on the ratio of the two numbers 28%. Therefore, the confidence inter-
vals for the samarium/scandium ratios for Unknown B and Clay 4 do overlap.

Since Clay 4 is the only clay with high values for scandium, thorium, cobalt, and
cerium, and it has a better elemental ratio comparison to Unknown B than the two next
best choices, it was correctly concluded that Unknown B contained Clay 4 as a filler.

Similar data interpretations were successfully made for Unknowns C and D with data
from Tables 3 and 4.

The fmal unknown, E, had extremely low concentrations for all elements. The first
step was to determine if any of the elements in Unknown E had concentrations above
the background of the unfilled paper, Cbzm. This comparison is given in Table 7. For
all cases, the concentration in Unknown E is less than Cb,z,m, except for thorium, in
which case they are approximately equal. The conclusion was that either Unknown E is
an unfilled paper or the percentage of loading of clay on paper was much less in Unknown
E than in the other unknowns. The true identification was that Unknown E is an unfilled
paper.

In the relationship for determining minimum detectable limits, an 8% loading of clay
on paper was assumed. From the identified unknowns, this assumption can be verified.
In each filled paper, an element was chosen whose concentration was sufficiently high

TABLE 7—Comparison of Unknown E to highest determined value
in background samples, Cb,z,max (concentration in g/g).

Element Unknown E Cb,zmax

Al 3.3 X l0 3.4 X 10
Sc 0.0069 0.011
Th 0.010 0.0085
Co 0.027 0.052
Cr 0.18 0.25
Ce 0.070 0.52
Sm 0.0076 0.014
Eu 0.002 0.0071
La 0.083 0.19
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to make the contribution from the unfilled paper negligible. Then the following equation
was used to determine the percentage of clay in paper:

(grams element x)/(grams paper) X 100% = (grams clay)/(grams paper), %
(grams element X)/(grams clay)

= % clay in paper

Table 8 lists the elements used to determine the approximate concentrations of clay
in each of the filled papers. These results validate the assumption made earlier.

TABLE 8—Experimentally determined clay loading of
unknown papers.

Unknown Element Used Clay in Paper, %

A Cr 8
B Sc 7
C Eu 7
D Sc 6

Conclusions

It was determined that clays vary substantially in their trace element profiles and
provide a data base for the identification of unknown filled papers.

Successful identification of unknown clay-filled sheets indicates that analysis of fine
papers by INAA, utilizing trace element profiles and concentration ratios, is a viable
instrumental technique in determining "fingerprint" profiles of such sheets. Therefore,
such an INAA technique should be useful for acquiring supportive evidence for forensic
purposes in determining similarities or differences in fine papers.
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